같은 이미지를 기준으로 3개의 Depth Estimation 도출을 진행.
1. SegmentAnyRGBD
https://github.com/Jun-CEN/SegmentAnyRGBD
GitHub - Jun-CEN/SegmentAnyRGBD: Segment Any RGBD
Segment Any RGBD. Contribute to Jun-CEN/SegmentAnyRGBD development by creating an account on GitHub.
github.com

2. Depth-Anything
https://github.com/LiheYoung/Depth-Anything
GitHub - LiheYoung/Depth-Anything: [CVPR 2024] Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. Foundation Mo
[CVPR 2024] Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. Foundation Model for Monocular Depth Estimation - LiheYoung/Depth-Anything
github.com

3. Depth-Anything-V2
https://github.com/DepthAnything/Depth-Anything-V2
GitHub - DepthAnything/Depth-Anything-V2: [NeurIPS 2024] Depth Anything V2. A More Capable Foundation Model for Monocular Depth
[NeurIPS 2024] Depth Anything V2. A More Capable Foundation Model for Monocular Depth Estimation - DepthAnything/Depth-Anything-V2
github.com

가장 최신 방법론인 Depth-Anything-V2의 결과가 훨씬 더 멀리 인식 가능하며, 객체 간 Segment 또한 뛰어남을 확인함.
'Development > Depth Estimation' 카테고리의 다른 글
이미지 깊이 분석 및 Point cloud 추출 (Image2pcd) (0) | 2024.11.15 |
---|